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Abstract

In most team sports, the whole game can be broken up into a sequence of plays, each
of which involves a subset of players and contributes differently to the game’s outcome.
We develop an innovative concept—called the winning advantage—to quantify the
value of each play, and use it to evaluate each player’s contribution toward winning
or losing a game. Winning advantage evaluates all plays on the same scale, so that
contributions from all players in different types of plays can be directly compared.
An example in baseball is provided to demonstrate the winning advantage and its
applications.

Keywords: winning advantage, winning probability, sport, baseball, evaluation, Markov
chain.

1 Introduction

In a sport game, the state of the game changes over time as the game progresses. From
a team’s standpoint, each state possesses an intrinsic winning advantage—the chance of
winning that is attributed to the state. Each play moves the game from one state to another,
and the numerical difference in winning advantage between the two states quantifies the
value of the play. In addition, by properly crediting this difference in winning advantage to
responsible players and accumulating each player’s contribution throughout the game, we
can determine each player’s contribution toward winning or losing the game.

Generally speaking, a team enjoys a higher winning advantage if it is in a better position
to win. In a stochastic game where the probability measure of all random events is well
defined so that each side can play with the optimal strategy, the winning advantage coincides
with the winning probability (such as Blackjack). In sports, however, the winning probability
depends largely on the abilities of the players, and there does not exist a proper probability
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measure for all random events, so it is impossible to define the winning probability. The idea
of the winning advantage is to quantify the chance of winning that is attributed to the state
of the game, by excluding the chance of winning that is attributed to the players’ abilities.

The definition of a state varies in different sports. In baseball, the state includes the top
or the bottom of the inning, the difference in runs scored, the number of outs, and the base-
occupying situation. In basketball, the state includes the time remaining, the possession of
the ball, and the difference in scores. In football, the state includes the time remaining, the
possession and location of the ball, the down, the number of yards needed for a first down,
and the difference in scores. Although states are defined differently, using a Markov chain
model allows us to develop a unified method to calculate the winning advantage in different
sports.

Using the winning advantage to evaluate each player’s performance has three distinctive
features compared with traditional statistics in sports:

1. The winning advantage evaluates all plays on the same scale, so that all players’ con-
tributions can be directly compared—even across sports.

2. The contribution in winning advantage can be directly interpreted as the number of
games a player helps his team win.

3. The winning advantage rewards great performances in clutch situations. For example,
a home run in the top of the ninth inning when the scores are tied contributes much
more to the winning than a home run in the top of the first inning.

1.1 Relation to Existing Work

In sports, there are numerous statistics that evaluate a player’s performance. The most
popular statistics remain to be those calculated by counting (such as home runs hit in
baseball and yards rushed in football) and by taking averages (such as batting average in
baseball and points per game in basketball). Each of these statistics, however, measures one
dimension of the game, so academic researchers have proposed many methods to integrate
these one-dimensional statistics into one statistic that measures the overall productivity of
a player.

For example in baseball, Cover and Keilers (1977) builds a model to predict the number
of runs a team would score if one player bats in all nine positions in the lineup. Pankin (1978)
evaluates the offensive performance by the increase in expected runs by the batter. A few
other methods can be found in Bennett and Flueck (1983). These methods evaluate a
player by how many runs a player helps his team score, because runs are closely tied to
wins. Our method, however, takes a step further and evaluates a player directly by how
many games a player helps his team win. In basketball, statistical regression models that
are used to measure the production of basketball players can be found in Zak, Huang, and
Siegfried (1979), Hofler and Payne (1997), and Berri (1999). These models are different from
ours because they assemble the production statistic by taking weighted average over one-
dimensional statistics, whereas our model directly evaluates how much each play contributes
to the outcome of a game.
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The works that are most closely related to our approach are those reported in Mills
and Mills (1970), Bennett and Flueck (1984), and Bennett (1993). In these works, the
authors first estimate the winning probability for each state in baseball, and then compute
statistics based on these probabilities. However, their methods of calculating the winning
probability are restricted to baseball. In addition, their calculation relies on many simplifying
assumptions and ignores the asymmetry in baseball—the away team batting on the top and
the home team the bottom of each inning. The strength of our method of estimating the
winning advantage is the use of a Markov chain model. Such a Markov chain model naturally
reflects the asymmetry in baseball and can be used directly in other sports.

1.2 Overview and Outline

In this paper, we use a Markov chain model to describe the evolution of a sport game. With
each state properly defined in a sport, we present an algorithm to recursively compute the
winning advantage of each state. The algorithm uses conditional expectation to improve
estimation, and applies to any sport as long as one can construct an appropriate Markov
chain model. Once we find the winning advantage for each state, we can credit each play
with the winning advantage difference resulting from state transition. Players involved in a
play can be properly credited, and their contribution toward the outcome of a game can be
determined. We use an example in baseball to demonstrate our method.

The rest of this paper is organized as follows. In Section 2, we define the winning
advantage and present an algorithm to compute it. In Section 3, we explain how to use the
winning advantage to score each play and credit players involved in the play. Finally, we
offer some concluding remarks in Section 4.

2 Calculation of the Winning Advantage

The winning advantage of a state represents the chance of winning that is attributed to the
state itself and does not include the chance of winning that is attributed to the players. For
example, leading by 2 runs gives a team a better chance to win than leading by 1 run, so
the former state—when everything else held equal—has a higher winning advantage than
the latter. We arbitrarily choose to define the winning advantage from the home team’s
standpoint for the ease of exposition.

Let Ω denote the set of all states in a game, and for s ∈ Ω, let w(s) denote the winning
advantage for state s. Because w(s) is the winning probability if we randomly select two
teams to start playing in state s, it is a function of s and does not depend on the history
of the game before state s is reached. In other words, we assume that the evolution of the
game can be described by a Markov chain.

Suppose we are given a collection of data with the detailed play-by-play descriptions of
n games. The easiest way to estimate w(s), s ∈ Ω, is to first let ns denote the number of
games that have reached state s at some point, and observe that each of these ns games
would be independently won by the home team with probability w(s). Letting ns,w denote
the number of times the home team does win in those ns games, the maximum likelihood
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estimator (see page 218 in Ross (2000) for instance) for w(s) is
ns,w

ns

. (1)

For example, consider the data set that includes 65949 regular-season games played in
Major League Baseball between 1974 and 2005.1 The home team won 35593 times in 65949
games, so from Equation (1) the winning advantage for the home team in the beginning of
the game is 0.5397. Out of those 65949 games, a leadoff home run occurred 975 times, and
the home team won 438 times in those games, so the winning advantage becomes 0.4492 if
the leadoff hitter of the opposing team hit a home run. Table 1 gives the winning advantage
calculated by Equation (1) for states after the leadoff hitter’s plate appearance is terminated.

Table 1: The Effect of the leadoff hitter; data from Major League 1974–2005.

Outcome of Number of Number of Winning advantage
the leadoff hitter wins occurrences by Equation (1)
Out 24875 44063 0.5645
Reach 1st 8628 17374 0.4966
Reach 2nd 1369 2916 0.4695
Reach 3rd 283 621 0.4557
Home Run 438 975 0.4492
Overall 35593 65949 0.5397

The drawback of using Equation (1) to compute the winning advantage is that the sample
size can be small if state s rarely appears in the data set. To improve the estimator in
Equation (1), let Ωs denote the set of states that can be directly reached from state s. From
our data set that consists of n games, let ns,t denote the number of games that move from
state s directly into state t, and ns,t,w the number of games that move from state s directly
into state t and are eventually won by the home team. We can rewrite the estimator in
Equation (1) as

ns,w

ns

=
∑
t∈Ωs

ns,t

ns

ns,t,w

ns,t

.

Note that ns,t,w/ns,t is an unbiased estimator for w(t), but a better unbiased estimator for
w(t) is nt,w/nt, because the latter has a larger sample size. Therefore, a better estimator for
w(s) is ∑

t∈Ωs

ns,t

ns

nt,w

nt

. (2)

Another way to see why the preceding estimator is better than the estimator ns,w/ns is
to express w(s) by conditioning on what happens next in state s:

w(s) =
∑
t∈Ωs

ps,tw(t),

1Play-by-play data is provided by Retrosheet. Games played in the 1999 season are not included because
data is unavailable. Games that are called or tied are not included.
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where ps,t denotes the probability that the Markov chain, when in state s, will next visit
state t. In other words, in Equation (2) we use ns,t/ns to estimate ps,t and use nt,w/nt to
estimate w(t).

To take this idea one step further, once we have an estimator for w(t), say w̃(t), for all
t ∈ Ωs, we can estimate w(s) by

w̃(s) =
∑
t∈Ωs

ns,t

ns

w̃(t). (3)

Because the game always moves forward and never visits the same state more than once, there
does not exist a loop in the state space. Therefore, we can use Equation (3) to recursively
estimate the winning advantage backward for all states.

We next demonstrate how to use Equation (3) to estimate the winning advantage with
a baseball example. We use a vector (i, j, k, l, m) to denote the state of a baseball game,
where i ∈ {1, 2, . . .}, j ∈ {t, b}, k ∈ {−32,−31 . . . ,−1, 0, 1, . . . , 31, 32}, l ∈ {0, 1, 2}, and
m ∈ {000, 001, 010, . . . , 111}. The argument i represents the inning; j indicates whether it
is the top or the bottom of the inning; k the margin of leading for the home team; l the
number of outs; m the base-occupying situation. For the base-occupying situations, we let
m = 000 when the bases are empty; m = 001 when there is a man on first; m = 011 if there
are men on first and second; m = 111 if bases are loaded; and so on. In the state space, we
allow the run difference to be at most 32, which is consistent with our data set where the
largest difference in runs is 22.

To use Equation (3), we first need to have an estimator for w(10, t, 0, 0, 000)—the winning
advantage when the game goes to extra innings. Because in our data set there are 6077 extra-
inning games, and the home team won 3170 times, we let w̃(10, t, 0, 0, 000) = 3170/6077. We
next present the algorithm based on Equation (3); some explanations follow.

Algorithm

1. Set w̃(10, t, 0, 0, 000) = 3170/6077.

2. Set w̃(9, b, k, l,m) = 1 for k ≥ 1, l = 0, 1, 2, and m = 000, 001, . . . , 111.

3. Set w̃(i, t,−32, l, m) = 0 for i = 1, 2, . . . , 9, l = 0, 1, 2, and m = 000, 001, . . . , 111.

4. Set w̃(i, b, 32, l, m) = 1 for i = 1, 2, . . . , 8, l = 0, 1, 2, and m = 000, 001, . . . , 111.

5. Use the following loop to compute the winning advantage:

for i← 9 to 1

j ← b

for k ← 31 to −32 (if i = 9, change 31 to 0)

for l← 2 to 0

for m← 7(111) to 0(000)

compute w̃(i, j, k, l, m) according to Equation (3).
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j ← t

for k ← −31 to 32

for l← 2 to 0

for m← 7(111) to 0(000)

compute w̃(i, j, k, l, m) according to Equation (3).

6. Set w̃(i, j, k, l, m) = w̃(9, j, k, l, m), for i = 10, 11, . . ., and for all j, k, l,m.

In step 1 we set the winning advantage for an extra-inning game; in step 2 we set the
winning advantage to 1 if the home team wins at the bottom of the ninth inning. In steps
3 and 4 we assign 1 to the winning advantage if a team leads by 32 runs (or more). In
other words, we assume it is impossible to overcome a deficit of 32 runs in baseball, which
is consistent with our data set. In step 5, we use Equation (3) to estimate the winning
advantage from the bottom of the ninth inning to the top of the first inning. Finally in step
6 we assign the winning advantage in extra innings equal to its counterpart in the ninth
inning. The rationale is that in each extra inning, either one team scores more runs to
win the game, or they have to play the next extra inning. Therefore, the situation in each
extra inning is just like the situation in the ninth inning, so the winning advantage in state
(9, j, k, l, m) is equal to that in state (i, j, k, l, m) for i = 10, 11, . . ., and for all j, k, l,m.
Table 2 gives a part of our results with this estimation method.

Table 2: Winning advantage in the bottom of the first inning; data from Major League
Baseball 1974–2005.

m
ka l 111 110 101 100 011 010 001 000
1 0 0.8181 0.8008 0.7905 0.7681 0.7676 0.7461 0.7284 0.6950
1 1 0.7584 0.7586 0.7395 0.7334 0.7233 0.7071 0.6940 0.6730
1 2 0.6992 0.6888 0.6852 0.6787 0.6805 0.6727 0.6643 0.6537
0 0 0.7516 0.7311 0.7117 0.6801 0.6884 0.6547 0.6327 0.5916
0 1 0.6896 0.6743 0.6548 0.6422 0.6300 0.6090 0.5949 0.5647
0 2 0.6116 0.5912 0.5873 0.5753 0.5813 0.5695 0.5595 0.5454
−1 0 0.6688 0.6431 0.6240 0.5800 0.5957 0.5589 0.5333 0.4876
−1 1 0.5914 0.5757 0.5561 0.5403 0.5323 0.5072 0.4903 0.4575
−1 2 0.5070 0.4768 0.4837 0.4636 0.4728 0.4610 0.4530 0.4361

ak: run difference; l: outs; m: base-occupying situation.

3 Play-by-Play Evaluation

When a play moves the game from state s to state t, we say the winning advantage score
(WAS) of the play is w(t) − w(s), which is then credited to the responsible player. If two
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or more players are involved in the play, then depending on the nature of a sport, one can
decide how to divide WAS to responsible players. We next use an example in baseball to
demonstrate this play-by-play evaluation.

In Game 1 of the 2004 American League Championship Series, New York Yankees were
the home team, and the Boston Red Sox were the away team. As shown in Table 3, when the
game started, the state was (1, t, 0, 0, 000), whose winning advantage is 0.5397 (from home
team’s standpoint). The strikeout of the leadoff hitter moved the state to (1, t, 0, 1, 000),
whose winning advantage is 0.5632. Therefore, from this strikeout Mussina earned 0.0235
WAS, and Damon lost 0.0235 WAS. The second play of the game was a fly out by Bellhorn,
and the state became (1, t, 0, 2, 000), whose winning advantage is 0.5801. Mussina earned
0.0169 WAS by inducing this fly out, and Bellhorn lost 0.0169 WAS. The game continued
and so did the play-by-play evaluation. In the last play of the game, Mueller grounded into
double play to reach the state (9, b, 3, 0, 000); the New York won the game by 3 runs, and
the winning advantage became 1.

Table 3: 2004 American League Championship Series Game 1.

Inning Play Resulting state WA WAS BOS player NYY player
New game play ball 1, t, 0, 0, 000 0.5397
1 Top strike out 1, t, 0, 1, 000 0.5632 0.0235 Damon Mussina

fly out 1, t, 0, 2, 000 0.5801 0.0169 Bellhorn Mussina
ground out 1, b, 0, 0, 000 0.5916 0.0115 Ramirez Mussina

1 Bot fly out 1, b, 0, 1, 000 0.5647 −0.0269 Schilling Jeter
fly out 1, b, 0, 2, 000 0.5454 −0.0193 Schilling Rodriguez
double 1, b, 0, 2, 010 0.5695 0.0241 Schilling Sheffield
double 1, b, 1, 2, 010 0.6727 0.1032 Schilling Matsui
single 1, b, 2, 2, 001 0.7566 0.0839 Schilling Williams
ground out 2, t, 2, 0, 000 0.7399 −0.0167 Schilling Posada

...
...

...
...

...
...

...
9, t, 3, 0, 000 0.9778

9 Top fly out 9, t, 3, 1, 000 0.9912 0.0134 Nixon Rivera
single 9, t, 3, 1, 001 0.9766 −0.0146 Varitek Rivera
single 9, t, 3, 1, 011 0.9395 −0.0371 Cabrera Rivera
double play 9, b, 3, 0, 000 1.0000 0.0605 Mueller Rivera

Throughout a game, the WAS accumulated by each player tells how much he contributes
toward the outcome of the game. For example, in Game 1 of the 2004 American League
Championship Series, Matsui of the New York Yankees was involved in five plays with
respective WAS 0.1032, 0.0611, −0.0017, 0.0021, and −0.0209, so his personal contribution
for this game is 0.1438. Furthermore, because the WAS is additive, we can evaluate a player’s
contribution by accumulating his WAS in a post-season series, in a regular season, or in his
entire career. Table 4 presents WAS numbers for the top ten pitchers in 2005 Major League
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regular-season games, and Table 5 presents those for the top ten position players.

Table 4: Major League Baseball top ten pitchers in 2005.

Pitcher Team Games IPa H R BB SO WAS
Roger Clemens Hou 32 211.1 151 50 62 185 6.5932
Dontrelle Willis Fla 40 236.1 213 71 55 170 6.5776
Andy Pettitte Hou 33 222.1 188 64 41 171 5.4943
Jake Peavy SD 30 203.0 162 68 50 216 5.1220
Chris Carpenter StL 33 241.2 204 76 51 213 4.6004
Roy Halladay Tor 19 141.2 118 38 18 108 4.5189
Roy Oswalt Hou 35 241.2 243 84 48 184 4.3940
Johan Santana Min 33 231.2 180 75 45 238 4.2263
Carlos Zambrano ChC 33 223.1 170 85 86 202 4.0604
Huston Street Oak 67 78.1 53 26 26 72 3.6240

aIP: innings pitched; H: hits; R: runs allowed; BB: walks; SO: strike outs; WAS: winning advantage score.

We can also use WAS to interpret the number of games a player helps his team win.
To understand the calculation, first consider a sport in which the winning advantage in
the beginning of a game is 0.5 for either side. In this sport, the players on the winning
team accumulate 1− 0.5 = 0.5 in WAS, and those on the losing team accumulate −0.5. In
other words, each 0.5 in WAS corresponds to a win, and each −0.5 corresponds to a loss.
Therefore, 2 times WAS becomes the number of games a player wins for his team. Although
in some sports, baseball for instance, the winning advantage in the beginning of a game is
slightly different from 0.5, this calculation is still reasonable, because each team plays the
same number of games at home and on the road. For example, as shown in Tables 4, Roger
Clemens contributed 13.19 wins by his pitching performance in 2005.

Because the WAS is directly tied to winning, the player who accumulates the highest
WAS should be the strong favorite for the most valuable player award. This method can
apply to a single game, a short series, or an entire season. The significance of using WAS to
select the most valuable player is that all players—regardless their respective positions—can
be directly compared on the same scale.

In baseball, it is relatively easy to find the responsible player for most plays because
each play can be viewed as a discrete event independent of others. When more than one
player is involved, the WAS can be divided among them based on their contribution (or
responsibility). In some other sports, however, it may not be straightforward to allocate
WAS. For example in basketball, the game progresses continuously unless a foul is called or
a timeout is taken. Many plays—such as a fast break or a turnover—involve more than one
player, and it is not clear who contributes the most. One way to credit the players during
a continuous play is to divide WAS equally among all five players on the court. A player
would receive positive WAS if his team moves to a better state during the time he is playing.

Besides analyzing a player’s contribution, we can also use WAS to analyze a team’s
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Table 5: Major League Baseball top ten position players in 2005.

Batter Team Games PAa HR RBI BA OBP SLG WAS
David Ortiz Bos 159 713 47 148 0.2995 0.4039 0.6040 8.9771
Alex Rodriguez NYY 162 715 48 130 0.3207 0.4308 0.6099 6.1571
Chipper Jones Atl 109 432 21 72 0.2961 0.4213 0.5559 5.5484
Carlos Delgado Fla 144 616 33 115 0.3013 0.4042 0.5816 5.2777
Tony Clark Ari 130 393 30 87 0.3037 0.3715 0.6361 4.9836
Travis Hafner Cle 137 578 33 108 0.3045 0.4170 0.5947 4.9394
Derrek Lee ChC 158 691 46 107 0.3350 0.4284 0.6616 4.7487
Jason Bay Pit 162 707 32 101 0.3055 0.4102 0.5593 4.5424
Adam Dunn Cin 160 671 40 101 0.2468 0.3905 0.5396 4.3741
Vladimir Guerrero LAA 141 594 32 108 0.3173 0.4057 0.5654 4.2820

aPA: plate appearance; HR: home runs; RBI: runs batted in; BA: batting average; OBP: on-base per-
centage; SLG: slugging percentage; WAS: winning advantage score.

strength and weakness. For each game, the difference in WAS a team accumulates (as a
whole) between winning and losing is 1. Therefore, throughout a season, the total WAS a
team accumulates is equal to the number of wins above 0.500. For example, in 2005 Houston
Astros in the National League won 89 games and lost 73 games, so the accumulated WAS
of all Astros players is equal to 89− 81 = 8. By breaking down this accumulated WAS into
categories—pitching, batting, base running, and fielding—we can determine the strength and
weakness of a team, as shown in Table 6. This analysis helps a general manager understand
the needs in order to build a more balanced team.

Another usage of the winning advantage is to help a manager make on-field decisions.
Specifically, in order to win, the manager should choose the play that maximizes the expected
winning advantage. In baseball, examples include whether to attempt a steal, whether to lay
a sacrifice bunt, and whether to intentionally walk a hitter. In basketball, examples include
whether to attempt a 3-point shot, and whether to intentionally commit a foul.

4 Concluding Remarks

One may argue that using WAS to evaluate players is unfair to those players who do not
get as many opportunities to perform when the game is on the line. We point out that the
WAS does not measure a player’s ability. Instead, it measures a player’s contribution as a
reflection from the game itself. A high WAS can be attributed to a player’s luck, ability, or
a combination of both—especially over a short period. However, over a long period such as
an entire season, the luck tends to even out and the WAS does give a good indication of a
player’s ability.

Using WAS to evaluate players also has a distinctive benefit: It motivates the players to
do what is best for the team. In sports, a player has an economic motivation to maximize his
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Table 6: WAS breakdowns for National League teams in 2005.

WAS by category
Team W L Pitching Batting Running Fielding Totala

SLN 100 62 13.1142 7.7369 1.0242 -2.8874 18.9879
ATL 90 72 2.1241 7.9306 1.1962 -2.2608 8.9900
HOU 89 73 15.8533 -6.0998 0.6037 -2.3571 8.0000
PHI 88 74 4.9704 2.5262 2.2931 -2.3787 7.4110
NYN 83 79 5.8568 -2.7128 2.2067 -3.3078 2.0428
FLO 83 79 8.3451 -3.6008 1.7814 -4.9267 1.5990
SDN 82 80 8.8969 -3.8681 0.2593 -4.2881 1.0000
MIL 81 81 3.0439 -0.2525 0.6297 -3.4210 0.0000
WAS 81 81 12.1820 -8.7111 -0.1590 -3.3546 -0.0428
CHN 79 83 2.8049 -0.5195 -0.1951 -4.0781 -1.9879
ARI 77 85 0.9314 -3.1203 0.9475 -2.7586 -4.0000
SFN 75 87 -0.4981 -3.1290 0.4060 -2.7788 -6.0000
CIN 73 89 -12.7067 6.1368 1.3123 -2.7424 -8.0000
LAN 71 91 -4.2703 -3.1512 0.4344 -3.0129 -10.0000
COL 67 95 -10.2653 -1.1624 0.8002 -3.3725 -14.0000
PIT 67 95 -3.3219 -8.2068 0.0942 -2.5655 -14.0000

aFor some teams the total does not add up to an integer, because a few games were called before the
bottom of the 9th inning due to inclement weather.

own market value by improving statistics that are appreciated in the open market. In many
situations a certain “valuable” statistic does not contribute much to winning. If a player’s
reward (salary, bonus, or market value) is proportional to his WAS, a rational player should
attempt to maximize the expected WAS in each play, which in turn maximizes the expected
number of wins for his team.

Despite the usefulness of the winning advantage, it has two apparent drawbacks. First,
the winning advantage is estimated from data, and the estimation—like all other estimations—
is prone to errors. Even though a large set of historical play-by-play data is available, it is
debatable whether the game is played the same way today as it was 50 years ago, so one
cannot indefinitely improve the estimation by including more historical data. Second, for
many plays it requires a subjective judgment to allocate WAS among responsible players.
Unlike counting rebounds or steals in basketball, people may have different opinions about
who contributes the most in a fast break. This disagreement makes the WAS a subjective
statistic, and therefore undercuts its authority. In this paper, we make an effort to reduce
these two drawbacks. We present an algorithm to improve the estimation of the winning ad-
vantage, and propose to divide WAS equally among responsible players when responsibility
cannot be unambiguously determined. We believe the WAS calculated from these methods
does provide useful insights into a player’s contribution.
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